All-trans Retinoic Acid Release from Surfactant-free Nanoparticles of Poly(DL-lactide-co-glycolide)

نویسندگان

  • Young-Il Jeong
  • Don-Gon Kim
  • Mi-Kyeong Jang
  • Jae-Woon Nah
چکیده

In this study, we prepared all-trans retinoic acid (ATRA)-encapsulated, surfactant-free, PLGA nanoparticles. The nanoparticles were formed by nanoprecipitation process, after which the solvent was removed by solvent evaporation or dialysis method. When a nanoparticle was prepared by the nanoprecipitation solvent evaporation method, the nanoparticles were bigger than the nanoparticles of the nanoprecipitation dialysis method, despite the higher although loading efficiency. Nanoparticles from the nanoprecipitation dialysis method were smaller than 200 nm in diameter, while the loading efficiency was not significantly changed. Especially, nanoparticles prepared from DMAc, 1,4-dioxane, and DMF had a diameter of less than 100 nm. In the transmission electron microscopy (TEM) observations, all of the nanoparticles showed spherical shapes. The loading efficiency of ATRA was higher than 90 % (w/w) at all formulations with exception of THF. The drug content was increased with increasing drugfeeding amount while the loading efficiency was decreased. In the drug release study, an initial burst was observed for 2~6 days according to the variations of the formulation, after which the drug was continuously released over one month. Nanoparticles from the nanoprecipitation dialysis method showed faster drug release than those from the nanoprecipitation solvent evaporation method. The decreased drug release kinetics was observed at lower drug contents. In the tumor cell cytotoxicity test, ATRA-encapsulated, surfactant-free, PLGA nanoparticles exhibited similar cytotoxicity with that of ATRA itself.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(DL-lactide-co-glycolide) Nanospheres for the Sustained Release of Folic Acid

Biodegradable polymers have become the materials of choice for a variety of biomedical applications. In particular, poly(DL-lactide-co-glycolide) nanoparticles have been studied as a material for drug delivery with the controlled release. In this paper we are describing a simple method for obtaining the system for targeted and controlled delivery of folic acid in the body. Folic acid was encaps...

متن کامل

Adriamycin release from poly(lactide-co-glycolide)-polyethylene glycol nanoparticles: synthesis, and in vitro characterization

The preparation, properties, and application in adriamycin delivery ofbiocompatible and biodegradable poly(lactide-co-glycolide)-polyethylene glycol (PLGA-PEG) nanoparticles are discussed. PLGA-PEG copolymers were synthesized by ring opening polymerization of the dl-lactide and glycolide in the presence of PEG1000. 1H-NMR and FT-IR spectrum were consistent with the structure of PLGA-PEG copolym...

متن کامل

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

Immune Augmentation of Single Contact Hepatitis B Vaccine by Using PLGA Microspheres as an Adjuvant

The present study was aimed to replace the alum type adjuvant for hepatitis B vaccine. The hepatitis B vaccine was encapsulated in poly (DL-lactide-co-glycolide) microspheres by solvent evaporation technique. The formulated microspheres were characterized in terms of morphology, particle size analysis, in vitro release study and in vivo immune response in male Wistar rats. The FT IR spectrum il...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008